3.1267 \(\int \frac{A+B x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx\)

Optimal. Leaf size=204 \[ \frac{2 \sqrt{-b} B \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}-\frac{2 \sqrt{-b} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (B d-A e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{b x+c x^2} \sqrt{d+e x}} \]

[Out]

(2*Sqrt[-b]*B*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d
)])/(Sqrt[c]*e*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[-b]*(B*d - A*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1
 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[b*x + c*
x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.120205, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {843, 715, 112, 110, 117, 116} \[ \frac{2 \sqrt{-b} B \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}-\frac{2 \sqrt{-b} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (B d-A e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{b x+c x^2} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[-b]*B*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d
)])/(Sqrt[c]*e*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[-b]*(B*d - A*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1
 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[b*x + c*
x^2])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
 && GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{A+B x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx &=\frac{B \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{e}+\frac{(-B d+A e) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{e}\\ &=\frac{\left (B \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{e \sqrt{b x+c x^2}}+\frac{\left ((-B d+A e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{e \sqrt{b x+c x^2}}\\ &=\frac{\left (B \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{e \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{\left ((-B d+A e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{e \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=\frac{2 \sqrt{-b} B \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}-\frac{2 \sqrt{-b} (B d-A e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{\sqrt{c} e \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.12466, size = 209, normalized size = 1.02 \[ \frac{-2 i e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} (b B-A c) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+2 i b B e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )+\frac{2 b B (b+c x) (d+e x)}{c}}{b e \sqrt{x (b+c x)} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

((2*b*B*(b + c*x)*(d + e*x))/c + (2*I)*b*B*Sqrt[b/c]*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I
*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - (2*I)*Sqrt[b/c]*(b*B - A*c)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*
x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)])/(b*e*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 216, normalized size = 1.1 \begin{align*} 2\,{\frac{b\sqrt{ex+d}\sqrt{x \left ( cx+b \right ) }}{{c}^{2}ex \left ( ce{x}^{2}+bex+cdx+bd \right ) } \left ( A{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) ce-B{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) cd-B{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) be+B{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) cd \right ) \sqrt{-{\frac{cx}{b}}}\sqrt{-{\frac{ \left ( ex+d \right ) c}{be-cd}}}\sqrt{{\frac{cx+b}{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x)

[Out]

2*(A*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*c*e-B*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2
))*c*d-B*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*e+B*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^
(1/2))*c*d)*b*(-c*x/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*((c*x+b)/b)^(1/2)*(e*x+d)^(1/2)*(x*(c*x+b))^(1/2)/e/
c^2/x/(c*e*x^2+b*e*x+c*d*x+b*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{\sqrt{c x^{2} + b x} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x}{\left (B x + A\right )} \sqrt{e x + d}}{c e x^{3} + b d x +{\left (c d + b e\right )} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*(B*x + A)*sqrt(e*x + d)/(c*e*x^3 + b*d*x + (c*d + b*e)*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x}{\sqrt{x \left (b + c x\right )} \sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)**(1/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral((A + B*x)/(sqrt(x*(b + c*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{\sqrt{c x^{2} + b x} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)